

Full Length Article

Assessment of Genetic Effects for Earliness and Yield Traits in F_1 and F_2 Half Diallel Populations of Wheat

Khilwat Afridi¹, Naqib Ullah Khan^{2*}, Zarina Bibi³, Samrin Gul², Rozina Gul², Sardar Ali⁴, Naushad Ali⁴, Ibni Amin Khalil¹, Fakhar Uddin² and Gulzar Ahmad¹

¹Cereal Crops Research Institute (CCRI), Pirsabak - Nowshera, Pakistan

²Department of Plant Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan

³Institute of Soil and Environmental Sciences, Faculty of Agriculture, Gomal University, D.I. Khan, Pakistan

⁴Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan

*For correspondence: nukmarwat@yahoo.com; nukmarwat@aup.edu.pk

Abstract

To develop high yielding wheat cultivars, it is imperative to study the genetic makeup of diverse wheat lines, and inheritance pattern of earliness and yield traits under existing environmental conditions. Inheritance of pre- and post-harvest yield-associated traits was studied in 6×6 F₁ and F₂ half diallel populations using Hayman's genetic analysis. Six diverse wheat genotypes were crossed in a half diallel fashion during 2010–2011. Parental genotypes along with their respective F₁ and F₂ half diallel populations were evaluated during 2011–2012 and 2012–2013 to explore the genetic basis of various traits. Genotypes differed significantly ($p \le 0.01$) for all the traits in both generations. According to scaling tests, additive-dominance model was partially adequate for all the traits in both generations. The significance of additive (D) and dominance (H₁ and H₂) components of genetic variance revealed the involvement of both additive and non-additive gene effects for days to maturity, peduncle length, spikelets per spike, grains per spike, grain yield and harvest index. The values of H₂/4H₁ were lower than optimum value (0.25) for all the traits which indicated the asymmetrical distribution of positive and negative genes among the parental genotypes. However, according to components of genetic variance and Vr-Wr graphs, over-dominance type of gene action was predominant for the majority of the traits. Broad-sense heritability values were greater than narrow sense, which also confirms non-additive gene effects. Prevalence of over-dominance type of gene action revealed that selection could be delayed to later segregating generations to improve yield traits. © 2018 Friends Science Publishers

Keywords: Genetic components of variance; Additive and non-additive gene action; Earliness and yield traits; F_1 and F_2 half diallel populations; *Triticum aestivum* L.

Abbreviations: D — additive genetic component of variance; H_1 and H_2 — dominance genetic components of variance; F — The mean of Fr values over arrays; h_2 — dominance effect (as algebraic sum over all loci in heterozygous phase in all crosses); E — The expected environmental component of variation; b — regression coefficient; $H_2/4H_1$ — denotes the proportion of genes with positive and negative effects in the parents; h^2/H_2 — denotes the number of gene groups/genes which control the character and exhibit dominance

Introduction

Wheat (*Triticum aestivum* L.) occupies an important position among cereals with respect to production and utilization. In Pakistan, it is used as the staple food and occupies a prominent position in economy (Saeed *et al.*, 2005). It ranks as first cereal crop with respect to utilization, nutritive value, production, storage qualities, adaptation and world trade. During 2016–2017, wheat was grown on an area of 9.052 million hectares, which produced 25.750 million tons of grains with average yield of 2845 kg ha⁻¹ in Pakistan (PBS, 2016–2017). Pakistan has made a significant progress towards increasing the grain yield per unit area

through introduction and hybridization of new high yielding wheat genotypes accompanied with new packages of production technology for various areas.

Climate change will increase the risk of food security for some vulnerable group of crops like wheat. In current scenario of climatic change, major constraints in wheat production are drought, heat, and irregular rainfall (Inamullah and Khalil, 2011; Ahmed *et al.*, 2015; Xiao *et al.*, 2017). Therefore, development of new wheat lines with early maturity and medium stature is pre-requisite to cope with environmental changes and for the genotypes to escape from onset of stress at later stages and are likely less lodging resistant. Early maturity in wheat is important for

To cite this paper: Afridi, K., N.U. Khan, Z. Bibi, S. Gul, R. Gul, S. Ali, N. Ali, I.A. Khalil, F. Uddin and G. Ahmad, 2018. Assessment of genetic effects for earliness and yield traits in F_1 and F_2 half diallel populations of wheat. *Int. J. Agric. Biol.*, 20: 2785–2796

adaptability to different environmental conditions. Earlymatured cultivars/lines may also be less prone to pre-harvest sprouting, which is an end-season phenomenon happens in humid conditions (Zare-Kohan and Heidari, 2012; Pervez *et al.*, 2014; Kayan *et al.*, 2017). Maturity is delayed for few days in cooler environments, where crops get more time to produce assimilates and to transfer them to sink resulting in higher grain yield.

Warmer temperatures affect crop growth and temperature above 30°C during grain filling, not only had negative impact on grain yield but also effect days to heading and maturity, and plant stature (Mondal et al., 2013). Peduncle length is an essential feature and major contributor to plant height and it differs genotype to genotype in wheat. Past studies revealed that peduncle length plays an important role in stem reserve remobilization which correlated with high grain yield (Farooq et al., 2011; Kaukab et al., 2013). Peduncle length was found positively correlated with plant height which contributes a great deal to plant stature in wheat (Yao et al., 2011). Spikelets per spike have key role in managing the variations in grain yield and significant positive association with grain yield (Ahmad et al., 2007; Ahmed et al., 2015). Grains per spike and grain size showed evidence about the structure of wheat plant; however, slight about the causes of variation in grain yield in wheat. Four components i.e., spikes per plant, spikelets per spike, grains per spike and individual grain weight are the key contributors to wheat grain vield (Afridi et al., 2017a).

To develop high yielding wheat cultivars, it is important to study the genetic makeup of diverse wheat lines, inheritance pattern of earliness and yield contributing traits and association of various traits with yield under existing environmental conditions. Grain yield being a polygenic character shows association with numerous traits greatly influenced by different environmental conditions (Inamullah and Khalil, 2011; Afridi et al., 2017a). Breeders have a great desire to identify wheat genotypes with rust resistance and greater yield potential. For exploitation of available germplasm and to determine the nature of inheritance for important traits, there are several breeding schemes like diallel analysis, line x tester analysis, and generation means analysis etc. Diallel analysis is one of the important tools used to cross the available germplasm (with desirable traits) in all possible combinations and to determine the nature of inheritance for various variables.

Hayman diallel analysis is one of the approaches used to determine genetic components of variance (D, H₁ and H₂) for classification of various traits with their gene action. Based on diallel analysis, the nature of gene action has been reported in several past studies. Over-dominance type of gene action was observed for days to maturity and grain yield in bread wheat (Ahmad *et al.*, 2007; Nazir *et al.*, 2014; Afridi *et al.*, 2017b). Ahmed *et al.* (2015) also reported over-dominance type of gene action among parental lines for spikelets per spike, grains per spike and grain yield in spring wheat. However, additive type of gene action with partial dominance was noted for controlling earliness, peduncle length, plant height, and grain yield in wheat (Farooq *et al.*, 2011). Additive type of gene action was also reported for spikelets per spike, grains per spike and grain yield in wheat (Rabbani *et al.*, 2011). Both additive and non-additive components of genetic demonstrated the involvement of additive and non-additive gene actions; however, over-dominance was predominant for harvest index in wheat (Ahmad *et al.*, 2007; Afridi *et al.*, 2017b). Some other studies suggested over-dominance type of gene action (Pervez *et al.*, 2014) for harvest index and other yield related traits in wheat.

Thus, before developing an appropriate breeding program it is essential that genetic mechanism controlling various characteristics using available populations must be studied. Keeping in view the importance of wheat yield in current scenario of climatic change, the current study was undertaken using 6×6 half diallel crosses to estimate gene action and inheritance patterns (additive *vs.* dominance) for various traits through Hayman's approach in F₁ and F₂ populations in wheat.

Materials and Methods

Breeding Material and Procedure

This study was conducted at Cereal Crops Research Institute (CCRI), Pirsabak, Nowshera, Pakistan during three consecutive years/growing seasons i.e., 2010-2011, 2011-2012 and 2012–2013. The genetic material was consisted of six bread wheat cultivars (Pirsabak-85, Khyber-87, Saleem-2000, Pirsabak-04, Pirsabak-05 and Shahkar-13) representing a wide range of diversity for earliness and yield traits (Table 1). All the six genotypes were crossed in 6×6 half diallel fashion during 2010–2011 to produce 15 F_1 hybrids. Parental genotypes and their F_1 hybrids were sown during 2011-2012, while parents and their F₂ populations were grown during 2012–2013 in a randomized complete block (RCB) design with two and three replications, respectively. The sub-plot size was 5 \times 2.1 m^2 having seven rows with five meters length. Similarly, recommended cultural practices and inputs including land preparation, sowing, weed control, fertilizer application, and irrigation were applied same to all the wheat genotypes in both experiments.

Traits Measurement

In both experiments, all the data were recorded on twenty randomly selected plants in parental genotypes, their F_1 and F_2 populations and then averaged. The studied traits were days to maturity, peduncle length, spikelets per spike, grains per spike, grain yield and harvest index per plant, and then averaged before analysis.

Statistical Analyses

Data were subjected to analysis of variance (ANOVA) according to Steel *et al.* (1997). After getting the significant mean differences, the diallel analysis was carried out according to Hayman (1954).

Diallel Analysis

Hayman's diallel approach (1954) and Mather's concept of D, H components of genetic variation for additive and dominance variances, respectively (as D used for additive variance instead of A, and H_1 and H_2 for dominance genetic components of variance instead of D) were used to study the genetic effects for various traits in both generations. Mather and Jinks (1982) have also made the recent development about this technique and components of genetic variation were estimated following that method of diallel analysis (Singh and Chaudhary, 1985). In F_2 populations, the formulae were modified to calculate the components of variance as proposed by Verhalen and Murray (1969).

Assumptions of Diallel Analysis and Tests of Adequacy

The validity of information from a group of genotypes obtained from diallel method is based on following assumptions, diploid segregation of chromosomes, homozygosity of parents, absence of reciprocal effects, absence of epistasis, no multiple allelism and independent distribution of genes among parents. Homozygous inbred lines of wheat were used in a diallel crossing program. The entries in the off diagonal cells of the diallel table were replaced by their means of direct cross and reciprocal prior to analysis for removing the reciprocal differences. The remaining three assumptions of non-allelic interaction, multiple allelism and independent assortment of genes were satisfied through scaling tests. Significant "F values" in the analysis of variance revealed their heterogeneity, which invalidates any one of these assumptions. In order to test the adequacy of the additive-dominance model and validity of diallel assumptions underlying the genetic model for data sets of various traits were tested through three scaling tests i.e., t² test, regression analysis and arrays analysis of variance (Wr + Vr and Wr – Vr).

According to Mather and Jinks (1982), non-significant value of t^2 test also confirms presence of no non-allelic interaction. The regression coefficient is expected to be significantly different from zero (b = 0) but not from unity (b = 1). Failure of this test indicates presence of epistasis and the data will be unfit for further genetic analysis. Significant differences between the arrays (Wr + Vr) and non-significant differences within the arrays (Wr - Vr) show the presence of dominance and absence of epistasis, and therefore, the genes will be independent in their action for random association. If all the three tests are found in favor of assumptions, the genetic model is declared fully adequate, partially adequate if at least one test fulfills the assumptions. Failure of all the three tests completely invalidates the additive-dominance model.

Estimation of Genetic Components of Variance

The genetic components of variance, their ratio along with standard error and correlation coefficient were estimated as follows:

— D: additive genetic variance; $F_1 = [D = Volo-E (Volo = Variance of the parents)]$, $F_2 = Volo-E (Volo- E)$, where E is the expected environmental component of variation.

— H_1 : dominance variance $[H_1 = Volo-4Wolo1 + 4V1L1-(3n-2)E/n, (Wolo = Mean covariance between the parents and the arrays)], where V1L1 is mean variance of arrays, and n is number of parental cultivars.$

- H_2 : H_1 [1-(u-v) 2], where u and v are the proportions of positive and negative genes, in the parents.

— F: mean of Fr values over arrays = 2Volo - 4Wolo1-2(n-2)E/n, where Fr is the covariance of additive and dominance effects in a single array. F is positive where dominant genes are more frequent than recessive.

— h^2 : 4(ML1-MLo)2-4(n-1)E/n2; dominance effect (as algebraic sum over all loci in heterozygous phase in all crosses). When frequency of dominant and recessive alleles is equal, then $H_1=H_2 = h_2$. Significance of h_2 confirms that dominance is unidirectional.

- E: expected environmental component of variation.

$$F_1 = \sqrt{H_1 / D}, F_2 = \sqrt{\frac{1}{4} H_1 / D}$$

: denotes average degree of dominance, If the value of this ratio is zero, there is no dominance; If it is greater than zero but less than 1, there is partial dominance; and if it is greater than 1, it denotes over-dominance.

 $H_2/4H_1$: denotes the proportion of genes with positive and negative effects in the parents, and if the ratio is equal to 0.25, indicates symmetrical distribution of positive and negative genes.

$$F_{1} = \frac{\sqrt{4DH_{1} + F}}{F_{2}} / \frac{\sqrt{4DH_{1} - F}}{\sqrt{4DH_{1} + 1/2F}}$$

$$F_{2} = \frac{1/4\sqrt{4DH_{1} + 1/2F}}{\sqrt{4DH_{1} - 1/2F}}$$

: denotes the ratio of dominant and recessive genes in the parents, If the ratio is 1, the dominant and recessive genes in the parents are in equal proportion; if it is less than 1, it indicates an excess of recessive genes; but being greater than 1, it indicates excess of dominant genes.

 h^2/H_2 : denotes the number of gene groups/genes, which control the character and exhibit dominance.

Heritability

In F_1 generation, the broad and narrow sense heritability values were calculated for each character according to Mather and Jinks (1982).

 $\begin{aligned} \text{Broad sense heritability}(F_1) &= \frac{(\frac{1}{2})D + (\frac{1}{2})H_1 - (\frac{1}{4})H_2 - (\frac{1}{2})F}{(\frac{1}{2})D + (\frac{1}{2})H_1 - (\frac{1}{4})H_2 - (\frac{1}{2})F + E} \end{aligned}$ $\begin{aligned} \text{Narrrow sense heritability}(F_1) &= \frac{(\frac{1}{2})D + (\frac{1}{2})H_1 - (\frac{1}{2})H_2 - (\frac{1}{2})F}{(\frac{1}{2})D + (\frac{1}{2})H_1 - (\frac{1}{4})H_2 - (\frac{1}{2})F + E} \end{aligned}$

In F_2 generation, the narrow sense heritability values were calculated as follows (Verhalen and Murray, 1969; Singh and Chaudhary, 1985).

Narrrow sense heritabili ty (F₂) =
$$\frac{(\frac{1}{4})D}{(\frac{1}{4})D + (\frac{1}{16})H_1 - (\frac{1}{8})F + E}$$

Where;

D = Variation due to additive effect

 H_1 = Component of variation due to dominance effect of genes

 $H_2 = H_1[1-(u-v)^2]$ [u = positive and v = negative genes] F = The mean of "Fr" over the arrays

E = The expected environmental component of variation

Results

Highly significant ($p \le 0.01$) differences were observed among F_1 and F_2 populations and their parental cultivars for days to maturity, peduncle length, spikelets per spike, grains per spike, grain yield and harvest index (Table 2). Adequacy of additive-dominance model was tested through three scaling tests *i.e.*, t^2 test, regression analysis and arrays analysis of variance (Wr + Vr and Wr – Vr). In present studies, the additive-dominance model was found partially adequate for all the traits in both generations (Table 3).

Days to Maturity

Components of genetic variance i.e., 'a' and 'b' were significant ($p \le 0.01$) for days to maturity in F₁ and F₂ generations (Table 4). Both components b_1' and b_2' were also significant ($p \le 0.01$) for the said trait in F_1 generation, and significant 'b₁' illustrated dominance deviation in one direction in F1 generation. Significance of component 'b2' showed asymmetrical distribution of genes affecting the said trait at loci whereas nonsignificant 'b₃' illustrated the absence of specific genes for days to maturity in F₁ generation. In F₂ generation, significance ($p \leq 0.01$) of component "b₁' displayed dominance deviation in one direction whereas significance $(p \le 0.01)$ of component 'b₃' exhibited specific gene effects for days to maturity. Non-significant value of component 'b₂' suggested symmetrical gene distribution among parents for days to maturity in F₂ generation.

Components of genetic variance (D, H_1 and H_2), F, h^2 and environmental (E) components were significant for days to maturity in F_1 generation (Table 5). However, in F_2 generations, H_1 , H_2 and E were significant while D, F and h^2 were non-significant. In both generations, dominance components (H_1 and H_2) were found greater than D and E components which suggested that non-additive gene action played important role in the inheritance of days to maturity. These results were also justified by the high values of the average degrees of dominance than unity (1.23, 1.679) in both generations, respectively. Unequal H_1 and H_2 components and the ratios of $H_2/4H_1$ (0.19, 0.22) in both generations also exhibited irregular distribution of positive and negative genes among the parental cultivars. The value of F was positive for both generations and significant in F_1 generation, indicated greater frequency of dominant alleles in the parental genotypes, which also confirmed by positive values of h^2 (6.94, 4.915) and proportion of dominant and recessive genes in the parental cultivars (2.45, 1.09) in both generations. Broad-sense heritability estimate were high in F_1 (0.82) and F_2 (0.75) generations for days to maturity. Narrow-sense heritability estimate were low in both F_1 (0.30) and F_2 (0.35) generations for said trait (Table 5).

In Vr-Wr graphical analysis, inheritance for days to maturity was regulated by over-dominance type of genes as the regression line transected the co-variance axis below the point of origin in F_1 and F_2 generations (Fig. 1a and b). According to array analysis on the regression line, cultivar Pirsabak-05 was being nearest to origin and had most dominant genes for days to maturity while cultivar Khyber-87 being farthest from origin having recessive genes in F_1 generation. In F_2 generation, cultivar Khyber-87 was being nearest to the origin had the most dominant genes while cultivar Pirsabak-05 was being far away from origin had recessive genes.

Peduncle Length

Genetic components 'a' and 'b' were significant $(p \le 0.01)$ in both generations, which demonstrated the role of additive and non-additive gene effects in controlling peduncle length (Table 4). The value of component 'b₁' was also significant $(p \le 0.01)$ in both generations, presented the existence of directional genes for peduncle length. The value of component 'b₂' was significant for F₁ $(p \le 0.05)$ and F₂ $(p \le 0.01)$ populations, which indicated asymmetrical distribution of genes among the parental genotypes. The component 'b₃' was nonsignificant in F₁ which revealed the absence of particular gene effects for the said trait. However, component 'b₃' was significant $(p \le 0.01)$ for F₂ populations indicating residual dominance for peduncle length.

Analysis of genetic components illustrated that D, H_1 , H_2 and E were significant in F_1 and F_2 generations for peduncle length (Table 5).

Genotype	Pedigree	Origin
Pirsabak-85	KVZ/BUSHS/KAL/BB	CIMMYT
Pirsabak-04	KAUZ/STAR	CIMMYT
Pirsabak-05	MUNIA/SHTO//AMSEL	CIMMYT
Shahkar-13	CMH84.339/CMH78.578//MILAN	CIMMYT
Saleem-2000	CHAM-6//KITE/PGO	CIMMYT
Khyber-87	KVZ/TRM//PTM/ANA-CM-43930	CIMMYT

Table 1: Local name, parentage and origin of the six parental cultivars

Table 2: Mean square for various traits in 6×6 F₁ and F₂ half diallel crosses of wheat

Variables	F_{1}/F_{2}	Mean squares									
		Genotypes	Parents	F_1/F_2	Parents vs. F1 & F2	Error	-				
d.f.	F ₁	20	5	14	1	20	-				
	F_2	20	5	14	1	40					
Days to maturity	F ₁	4.11**	7.6**	1.59*	21.94**	0.63	0.46				
	F ₂	10.31**	11.02**	8.99**	25.20**	3.05	1.04				
Peduncle length	F ₁	14.31**	25.04**	10.21**	17.94**	1.29	3.23				
-	F ₂	28.90**	32.90**	14.86**	205.51**	1.48	3.59				
Spikelets spike ⁻¹	F ₁	5.27**	2.8*	3.10*	48.00**	1.18	5.12				
	F ₂	5.03**	9.72**	3.48**	3.16*	0.72	3.94				
Grains spike ⁻¹	F ₁	29.18**	42.28**	22.5**	57.2**	2.6	2.25				
	F ₂	18.69**	30.15**	15.42**	7.14 ^{NS}	5.49	3.62				
Grain yield plant-1	F ₁	40.29**	51.95**	27.53**	160.7**	8.32	9.2				
	F ₂	76.98**	140.50**	46.78**	182.11**	13.62	15.31				
Harvest index plant ⁻¹	F ₁	32.24*	43.02*	23.58*	99.72*	11.76	9.13				
	F ₂	44.77**	99.92**	27.84*	6.05 ^{NS}	11.09	9.65				

*, ** = Significant at $P \leq 0.05$ and $P \leq 0.01$, NS = Non-significant

Table 3: Scaling test for various traits in 6×6 F₁ and F₂ half diallel crosses of wheat

Variables	F_1/F_2	t ² test	Regressio	n analysis	ANOVA	of Arrays	Conclusion	
			b0	b1	Wr + Vr	Wr - Vr	-	
Days to maturity	F1	1.4270 ^{NS}	-0.2735 ^{NS}	1.2853 ^{NS}	0.4266 ^{NS}	0.2437 ^{NS}	Partially adequate	
	F ₂	0.3913 ^{NS}	-1.1187 ^{NS}	2.4668 ^{NS}	0.7598 ^{NS}	1.0912 ^{NS}	Partially adequate	
Peduncle length	F_1	-0.0225^{NS}	0.2008^{NS}	-0.2511 ^{NS}	1.8257 ^{NS}	0.6677^{NS}	Partially adequate	
-	F_2	-0.0034 ^{NS}	0.3256 ^{NS}	-0.4895 ^{NS}	1.4302 ^{NS}	0.4025 ^{NS}	Partially adequate	
Spikelets spike ⁻¹	F_1	2.0397 ^{NS}	-0.0831 ^{NS}	2.9959 ^{NS}	0.4474^{NS}	0.8233 ^{NS}	Partially adequate	
	F_2	-0.0068 ^{NS}	0.7065 ^{NS}	-1.1497 ^{NS}	1.7218 ^{NS}	0.2427 ^{NS}	Partially adequate	
Grains spike ⁻¹	F ₁	-0.1493 ^{NS}	0.3147 ^{NS}	-0.5551 ^{NS}	1.2759 ^{NS}	0.6361 ^{NS}	Partially adequate	
-	F_2	-0.0283 ^{NS}	0.2220 ^{NS}	-0.3788 ^{NS}	1.0321 ^{NS}	0.5442 ^{NS}	Partially adequate	
Grain yield plant ⁻¹	F ₁	-0.0159 ^{NS}	0.1626 ^{NS}	-0.2420 ^{NS}	1.1571 ^{NS}	0.7899 ^{NS}	Partially adequate	
	F_2	-0.0249 ^{NS}	1.0822 ^{NS}	-1.4096 ^{NS}	1.1864 ^{NS}	1.1848 ^{NS}	Partially adequate	
Harvest index plant ⁻¹	F ₁	2.5162 ^{NS}	-0.4991 ^{NS}	0.9176 ^{NS}	0.9291 ^{NS}	0.1507 ^{NS}	Partially adequate	
	F ₂	-0.1642 ^{NS}	0.1168 ^{NS}	-0.1481 ^{NS}	1.5666 ^{NS}	1.6400 ^{NS}	Partially adequate	

Table 4: Genetic analysis for various traits in 6×6 F₁ and F₂ half diallel crosses of wheat

Source of variation	d.f. Days to maturity		maturity	Peduncle length		Spikelets spike ⁻¹		Grains spike ⁻¹		Grain yield plant ⁻¹		Harvest index plant		
	\mathbf{F}_1	F ₂	F ₁	F ₂	F ₁	F ₂	F ₁	F ₂	F ₁	F ₂	F ₁	F ₂	F ₁	F ₂
Replications	1	2	0.41	0.90	36.21**	8.67**	3.43	3.90**	22.87^{*}	8.27	13.71	26.79	29.13	21.75
a	5	5	7.6**	18.08^{**}	43.12**	58.38**	4.72^{*}	10.2**	59.47**	39.3**	66.37**	182.28**	35.85*	135.93**
b	15	15	2.94**	7.74**	4.29^{*}	18.99**	5.46**	3.37**	18.69**	11.82^{*}	31.83**	41.97**	31.04*	14.41
b ₁	1	1	21.94**	25.2**	18.02**	204.69**	48.01^{**}	2.99^{*}	25.75^{*}	6.75	159.72**	182.32**	99.65**	6.04
b ₂	5	5	3.43**	5.63	4.05^{*}	5.83**	4.32*	3.27**	4.97	10.52	11.27	19.6	30.86	9.87
b ₃	9	9	0.56	5.63*	2.89	5.67**	1.37	3.47**	25.52^{**}	13.11*	29.05**	38.81*	23.51	17.86
Error	20	40	0.63	5.63	1.41	1.49	1.18	0.72	3.68	5.42	8.31	13.62	11.75	11.12

*, ** = Significant at $P \le 0.05$ and $P \le 0.01$, NS = Non-significant

The F values were non-significant in both generations while h^2 was significant in F_2 generation. Additive effects were found to be larger than dominance and environmental components, which specified that additive type of gene action played primary role in

inheritance of peduncle length in F_1 generation. Average degree of dominance was also less than unity (0.75) which authenticated additive type of gene action for peduncle length. In F_2 generation, dominance components effects were larger than additive, which

Table 5	5: (Genetic o	components	of	variance	for	various	traits	in	6 ×	6 F	l_1 and	$ F_2 $	half	dialle	l crosses	of	wh	eat
---------	------	-----------	------------	----	----------	-----	---------	--------	----	-----	-----	-----------	---------	------	--------	-----------	----	----	-----

Genetic	Days to maturity		Peduno	le length	Spikele	ts spike ⁻¹	Grains	spike ⁻¹	Grain yie	eld plant ⁻¹	Harvest index plant ⁻¹		
Components	F ₁	F ₂	F ₁	F ₂	F ₁	F ₂	F ₁	F ₂	F ₁	F ₂	F ₁	F ₂	
D	$3.46^{*} \pm 1.02$	2.64±1.89	11.9 [*] ±2.85	$10.26^{*} \pm 2.26$	0.91±0.80	$3.05^{*}\pm0.79$	22.69 [*] ±5.88	8.46 [*] ±3.69	21.49 [*] ±10.16	42.41 [*] ±12.97	15.17 ± 11.38	29.92*±10.01	
H ₁	$5.25^{*} \pm 1.32$	7.43*±3.04	6.49*±2.43	$16.90^{*} \pm 2.91$	$7.90^{*} \pm 1.95$	$4.24^{*} \pm 0.97$	$32.3^{*}\pm6.56$	12.70 [*] ±4.74	45.33 [*] ±13.77	40.33 [*] ±12.78	46.49 [*] ±19.31	11.43 ± 8.16	
H ₂	$3.97^* \pm 0.95$	6.51 [*] ±2.39	5.23 [*] ±1.76	$15.64^{*} \pm 2.51$	6.33 [*] ±1.46	$3.44^* \pm 0.73$	31.38 [*] ±5.97	$10.77^{*} \pm 3.61$	43.56 [*] ±11.83	37.71 [*] ±10.70	37.35 [*] ±14.37	10.95 ± 6.47	
F	3.59 [*] ±1.35	0.75 ± 2.39	2.84 ± 2.93	2.01±2.35	1.076±1.33	$2.53^{*} \pm 1.01$	12.09 ± 6.28	4.88 ± 4.64	10.28 ± 11.68	20.40±14.44	18.57 ± 16.70	11.87±10.55	
h ²	$6.94^{*}\pm2.24$	4.92 ± 3.60	5.46 ± 3.13	$43.90^{*} \pm 8.13$	15.31 [*] ±4.14	0.53 ± 0.60	$7.44 \pm \! 5.88$	0.62 ± 2.76	49.48 [*] ±22.54	37.14±19.43	29.07 ± 24.16	42 ± 4.50	
E	$0.34^{*}\pm0.08$	$1.04^{*}\pm0.17$	0.75±0.12	$0.62^{*}\pm0.11$	$0.49^{*}\pm0.12$	$0.24^* \pm 0.04$	$1.78^{*} \pm 0.43$	$1.64^* \pm 0.27$	$4.49^{*} \pm 1.04$	$4.42^{*}\pm0.708$	$6.34^{*} \pm 1.49$	3.38 [*] ±0.56	
$F_1: \sqrt{H_1/D}$	1.23	1.68	0.74	1.28	2.95	1.18	1.19	1.23	1.45	0.98	1.75	0.618	
F ₂ : √1/4H ₁ /D													
$H_2/4H_1$	0.19	0.22	0.20	0.23	0.20	0.20	0.24	0.21	0.24	0.23	0.20	0.24	
KD / KR	2.45	1.09	1.39	1.08	1.50	1.43	1.57	1.27	1.39	1.28	2.07	1.38	
h^2/H_2	2.1	0.91	1.25	3.37	2.90	0.18	0.28	0.07	1.36	1.18	0.93	-0.05	
Heritability (bs)	0.82	0.75	0.90	0.93	0.82	0.87	0.88	0.77	0.80	0.83	0.66	0.78	
Heritability (ns)	0.30	0.35	0.72	0.51	0.25	0.38	0.38	0.39	0.30	0.47	0.16	0.60	

* In F₁ parameter value is significant when it exceeds 1.96 after dividing it by its standard error

specified the dominant gene action for inheritance of peduncle length. Average degree of dominance was more than unity (1.283) which also suggested non-additive type of gene action in F_2 populations. Unequal values of H_1 and H_2 and ratios of $H_2/4H_1$ (0.20, 0.23) exhibited the asymmetrical distribution of positive and negative genes among the parental genotypes for peduncle length in both generations. Positive values of F demonstrated important role of dominant alleles in the parental genotypes for peduncle length in both generations which also authenticated by ratios of dominant and recessive genes in the parental genotypes (1.385, 1.08). Broad-sense heritability estimates were high (0.90, 0.93) for F_1 and F_2 generations, respectively for peduncle length. Narrow-sense heritability estimate were high to moderate *i.e.*, 0.72 and 0.51 in F_1 and F_2 generations, respectively (Table 5).

Peduncle length was controlled by additive type of gene action with partial dominance as the regression line cut the Wr-axis above the origin in F_1 generation (Fig. 2a). Varietal positions along the regression line indicated that Pirsabak-85 had the most dominant genes and Shahkar-13 had the most recessive genes for peduncle length in F_1 hybrids. In F_2 generation, regression line intersected the covariance axis below the point of origin for peduncle length, demonstrated over-dominance gene action for said trait (Fig. 2b). On the regression line, Pirsabak-05 being was found nearest to origin and comprised of the dominant genes while Shahkar-13 was being far away from origin which owned maximum recessive genes.

Spikelets per Spike

Genetic analysis displayed significant $(p \le 0.01)$ components 'a' and 'b' in both generations, which indicated the involvement of both additive and non-additive gene action for spikelets per spike (Table 4). Significant values of component 'b1' in F₁ $(p \le 0.01)$ and F₂ $(p \le 0.05)$ populations specified the occurrence of directional genes for said trait. Asymmetrical genes distribution among the parental genotypes was supported by significant value of component 'b₂' in F₁ $(p \le 0.05)$ and F₂ $(p \le 0.01)$ generations. Specific gene effects were identified due to significant $(p \le 0.05)$

Fig. 1: Vr-Wr graph for days to maturity in 6×6 (a) F_1 and (b) F_2 half diallel populations of wheat

0.01) value of component b_3' in F_2 generation; however, no such gene effect was found in F_1 generation due to non-significant value of said component.

According to analysis, all the components of genetic variance were significant in both generations except components D and F in F_{1s} and h^2 in F_2 generation (Table 5). Dominant components were greater than additive and showing important role of non-additive type of gene action for spikelets per spike in both generations. Average degrees of dominance were greater than unity (2.95, 1.179) which also suggested over-dominance for said trait in both generations.

Fig. 2: Vr-Wr graph for peduncle length in 6×6 (a) F_1 and (b) F_2 half diallel populations of wheat

The H_2 value was less than H_1 in both generations, which signified that positive and negative genes were not in proportion at all loci, and it was confirmed by the ratios of $H_2/4H_1$ (0.20, 0.20). The component F was positive for spikelets per spike in both generations which demonstrated unequal distribution of dominant and recessive genes in the parental genotypes, and said findings also verified by ratios of dominant and recessive genes in the parental cultivars (1.50, 1.43). Heritability provides the essential information for the transfer of characters from parents to their progeny, hastens the evaluation of genetic and environmental effects on phenotype diversity, and helps in selection. High broad-sense (0.82, 0.87) and low narrow (0.25, 0.38) heritability values were recorded for F_1 and F_2 generations, respectively which specified that dominant gene action was responsible for controlling spikelets per spike in wheat (Table 5).

For spikelets per spike, the Vr-Wr graph showed that regression line intercepted Wr-axis on the negative side and revealed over-dominance type of gene action in both generations (Fig. 3a and b). The parental genotypes along the regression line revealed that maximum dominant genes were observed for cultivars Pirsabak-04 in F_1 and Shahkar-13 in F_2 generation, as these cultivars were closer to the point of origin. Cultivars Pirsabak-85 and Pirsabak-05 received maximum recessive genes being on distant positions from the origin in F_1 and F_2 generations, respectively.

Fig. 3: Vr-Wr graph for spikelets per spike in 6×6 (a) F_1 and (b) F_2 half diallel populations of wheat

Grains per Spike

Analysis of variance displayed that components 'a' and 'b' were significant ($p \le 0.01$) for grains per spike in F₁ and F₂ generations, which indicated the involvement of both additive and non-additive gene action (Table 4). Significant ($p \le 0.05$) component 'b₁' in F₁s and non-significant in F₂s showing directional dominance genes and absence of directional dominance genes, respectively for grains per spike. Symmetrical genes distribution among the parental genotypes was supported by non-significant values of component 'b₂' in both generations. Specific gene effects were observed due to significant values of component 'b₂' in F₁ ($p \le 0.05$) generations.

Components of genetic variation (D, H₁ and H₂) and E were significant whereas covariance of additive and dominance effects (F) and h^2 were non-significant in both generations (Table 5). Significant positive value of E displayed important role of environment in the phenotypic expression of the said trait in both generations. However, dominance components were greater in magnitude than additive variance, suggesting dominant type of gene action for controlling grains per spike in both generations. Average degrees of dominance were greater than unity (1.19, 1.225) which also confirms over-dominance in both generations.

Fig. 4: Vr-Wr graph for grains per spike in 6×6 (a) F_1 and (b) F_2 half diallel populations of wheat

The values of H_1 and H_2 were different from each other, which indicated that positive and negative alleles were different among parental cultivars for grains per spike in both generations, and it was also authenticated by the ratios of $H_2/4H_1$ (0.24, 0.21). In both generations, the F value was positive for grains per spike which demonstrated unequal distribution of dominant and recessive genes, and the same was also confirmed by the ratios of dominant and recessive genes in the parental cultivars (1.57, 1.27). High broad (0.88, 0.77) and low narrow sense (0.38, 0.39) heritability values were observed for grains per spike in F_1 and F_2 generations, respectively (Table 5).

Graphical analysis showed that over-dominance type of gene action was observed as the regression line intercepted the Wr-axis below the point of origin for grains per spike in both generations (Fig. 4a and b). Arrays of parental cultivars on the regression line revealed that parental cultivars were genetically diverse for grains per spike. Cultivar Khyber-87 had more dominant genes as it was nearest the origin while genotype Pirsabak-85 was away from the origin with more recessive genes in F_1 generation. Cultivars Pirsabak-85 and Khyber-87 were being nearest the origin had more dominant genes while cultivar Pirsabak-05 was far away from the origin and had more recessive genes for grains per spike in F_2 generation.

Fig. 5: Vr-Wr graph for grain yield per plant in 6×6 (a) F_1 and (b) F_2 half diallel populations of wheat

Grain Yield

The components *i.e.*, 'a' and 'b' were significant ($p \le 0.01$) for grain yield per plant which showed the involvement of additive and non-additive gene action in both generations (Table 4). Significant ($p \le 0.01$) component 'b₁' in F₁ and F₂ generations specified the occurrence of directional genes for grain yield per plant. Non-significant component 'b₂' indicated asymmetrical distribution of genes among parental genotypes in both generations. Specific gene effects were observed due to significant values of component 'b₃' in F₁ ($p \le 0.01$) and F₂ ($p \le 0.05$) generations.

Components of genetic variation (D, H₁ and H₂) and E were significant while F was non-significant for grain yield per plant in both generations (Table 5). The values of H₁ and H₂ were greater than D in F₁ generation which revealed non-additive gene action in genetic control of grain yield per plant. However, the value of D was greater than H₁ and H₂ in F₂ generation which specified the greater role of additive gene action. Average degree of dominance was also greater than unity (1.452) in F₁ hybrids, while it was less than unity (0.98) in F₂ populations. Greater value of H₁ than H₂ indicating that positive and negative alleles were different among parental lines, and it was confirmed by ratios of H₂/4H₁ (0.24, 0.23) for grain yield in both generations.

Fig. 6: Vr-Wr graph for harvest index per plant in 6×6 (a) F_1 and (b) F_2 half diallel populations of wheat

Positive value of F for grain yield demonstrating unequal distribution of dominant and recessive genes in parental cultivars for both generations. Significant and non-significant h^2 in F_1 and F_2 generations, respectively supporting the dominant and additive gene action, however, ratios of dominant and recessive genes confirmed excess of dominant genes in the parental cultivars (1.39, 1.28). Significant environmental variance (E) specified the primary role of environment in controlling grain yield in wheat. Broad-sense heritability (0.80, 0.83) were greater than narrow-sense (0.30, 0.47) for grain yield per plant in F_1 and F_2 generations, respectively (Table 5).

In Vr-Wr graphical analysis, the regression line cut off the Wr-axis below the point of origin which revealed over-dominance type of gene action for grain yield in F_1 generation (Fig. 5a). In F_2 generation, the regression line intercepted the Wr-axis above the origin and suggesting additive type of gene action for grain yield (Fig. 5b). Parental cultivars on the regression line revealed that cultivar Pirsabak-05 had the most dominant genes, while cultivar Pirsabak-85 had the most recessive genes in both generations.

Harvest Index

The components 'a' and 'b' were significant for harvest index per plant in F_1 generation ($p \le 0.05$), which suggested the involvement of both additive and non-additive gene effects (Table 4). In F_2 generation, significant $(p \le 0.01)$ components 'a' and non-significant 'b' suggested that additive type of gene action was involved in genetic control of harvest index per plant. The component 'b1' was significant ($p \le 0.01$) which specified the occurrence of directional genes in F₁ generation. However, component 'b₁' was non-significant in F₂ generation and indicating absence of directional genes. In both generations, the component 'b₂' non-significant which revealing asymmetrical was distribution of genes among the parental genotypes. Nonspecific gene effects were recorded due to non-significant values of component 'b₃' in both generations.

Additive component was non-significant while dominant components were significant in F₁s, which indicated the primary role of non-additive genes in genetic control of harvest index (Table 5). However, in F_2 generation, additive component was significant while dominant genetic components were non-significant which specified the greater role of additive gene action for harvest index. Average degree of dominance was greater than unity (1.751) in F₁s while less than one (0.618) in F₂s which confirming the non-additive and additive gene action in F_1 and F_2 generations, respectively for harvest index. Unequal values of H₁ and H_2 components and the ratios of $H_2/4H_1$ (0.20, 0.24) exhibited the irregular distribution of positive and negative genes among the parental cultivars for harvest index in both generations. Positive value of F showed that dominant genes were more active among parental cultivars for harvest index in both generations, and it was confirmed by ratios of dominant and recessive genes in the parental cultivars (2.07, 1.38). Positive and negative values of h^2 in F₁ and F₂ generations indicating the high level of dominant genes in F₁s and low level in F₂ populations. Broad-sense heritability (0.66, 0.78) values were greater than narrow sense (0.16, 0.60) for harvest index per plant in F₁ and F₂ generations, respectively which specified non-additive gene effects for harvest index per plant in both generations (Table 5).

In Wr/Vr graph, the regression line intercepted the covariance line below the origin and mentioned overdominance type of gene action (Fig. 6a). In F_2 generation, the regression line cut the covariance line above the origin, which demonstrated partial dominance for harvest index (Fig. 6b). The genotypes along the regression line illustrated that cultivars Pirsabak-05 and Pirsabak-04 had the maximum dominant genes for harvest index in both generations whereas Saleem-2000 and Khyber-87 had the maximum recessive genes in F_1 and F_2 generation, respectively.

Discussion

After knowing the inheritance pattern of various variables and nature of genetic components, the breeders could better decide about the future use of the developed and improved populations after hybridization. The mode of inheritance of different characters can be investigated following Hayman (I954) diallel analysis in full and half diallel crosses. These investigations revealed that F1 and F₂ populations and their parental genotypes have greater genetic variability, and thus the said data was further for genetic analysis. In previous studies, different wheat populations with diverse genetic makeup also revealed significant differences for days to maturity, spikelets per spike, grains per spike, grain yield and harvest index (Ahmad et al., 2007; Afridi et al., 2017a). Adequacy of additive-dominance model was found partially adequate for all the traits in both generations. In past studies, additivedominance model was partially adequate for days to maturity, yield traits and harvest index in wheat (Faroog et al., 2011; Afridi et al., 2017b). Additive-dominance model was partially adequate for spikelets per spike, grains per spike and grain yield in different wheat populations with diverse genetic makeup (Nazir et al., 2014; Ahmed et al., 2015; Afridi et al., 2017b). However, Yao et al. (2011) observed that the model was fully adequate for earliness and yield traits in bread wheat genotypes.

Significance of both additive and dominance components of genetic variance revealed the involvement of both additive and dominance genetic effects for days to maturity, peduncle length, spikelets per spike, grains per spike, grain yield and harvest index. Previous studies also revealed that both additive and dominance components were involved in the inheritance of earliness and yield traits in different wheat populations under diverse environments (Farooq et al., 2011, 2015). Dominance components were predominant and greater in magnitude than additive component which suggested that non-additive gene action played primary role in the inheritance of days to maturity in both generations. Present results further revealed that according to Vr-Wr graph, the inheritance for days to maturity was regulated by over-dominance type of gene action in F_1 and F_2 generations. Farshadfar *et al.* (2012) reported that average degree of dominance was greater than unity for earliness which demonstrated the greater role of over-dominance in bread wheat. However, additive component excelled dominance components for earliness traits in diallel crosses of five wheat cultivars using two different models (Zare-Kohan and Heidari, 2012). Contradiction between present and past findings might be due varied genetic makeup of the wheat genotypes and the environment where studied.

According to components of genetic variance and Vr/Wr graph, additive gene action played an important role in the inheritance of peduncle length in F_1 generation. However, in F_2 generation, the said trait was controlled by

non-additive gene action as authenticated by components of genetic variance, average degree of dominance and Vr/Wr graph. In past studies, components of genetic variance and average degree of dominance confirmed that peduncle length showed the involvement of additive genes for inheritance in bread wheat (Ajmal *et al.*, 2011; Rabbani *et al.*, 2011). In graphical analysis, additive type gene action was found responsible for management of peduncle length in bread wheat (Pervez *et al.*, 2014). However, over-dominance type of gene action was reported for peduncle length in graphical analysis for yield and yield related traits in spring wheat (Kaukab *et al.*, 2013).

Greater values of dominance components and average degrees of dominance suggested over-dominance type of gene action for spikelets per spike, grains per spike and grain yield in both generations. Past studies also revealed that according to genetic components, average degree of dominance and Vr-Wr graphs, the spikelets per spike, grains per spike and grain yield were controlled by non-additive gene action in spring wheat (Farooq et al., 2011; Asadabadi et al., 2012). Key role of dominance components was observed for spikelets per spike, grains per spike and grain yield in spring wheat and triticale (GrebennIkova et al., 2011; Nazir et al., 2014; Ahmed et al., 2015). According to graphical analysis, over-dominance type of gene action was noted for various yield traits in wheat (Ojaghi and Akhundova, 2010). However, Ajmal et al. (2011) findings revealed that according to components of genetic variance and average degree of dominance, additive type of genes were found responsible for inheritance of spikelets per spike, grains per spike and grain yield in wheat. Graphical analysis for grain yield and its components showed additive type of gene action in spring wheat (Allah et al., 2010). The inconsistent findings might be due to varied genetic makeup of the wheat genotypes and the environment.

For harvest index, dominance genetic components were significant and larger than additive in F_1s , which indicated the primary role of non-additive genes in inheritance of the said trait. However, after segregation in F_2 generation, the harvest index was controlled by additive gene action. Significant additive and non-additive components of genetic demonstrated the involvement of both additive and non-additive gene actions for harvest index in wheat (Ahmad *et al.*, 2007). In past studies, average degree of dominance and graphical analysis suggested over-dominance type of gene action for harvest index in wheat (Farooq *et al.*, 2011). However, additive type of gene action was responsible for inheritance of various yield traits including harvest index in spring wheat (Rabbani *et al.*, 2011; Pervez *et al.*, 2014).

For all the pre- and post-harvest traits, the broad-sense heritability values were greater than narrow sense which confirms the over-dominance type of gene action. High broad and low narrow-sense heritability values were recorded for various yield traits in F_1 and F_2 generations of bread wheat (Ahmad *et al.*, 2007). High broad and low narrow-sense heritability values were recorded for spike traits and grain yield in bread wheat, suggesting non-additive genes control in the inheritance of these traits (Nazir *et al.*, 2014; Ahmed *et al.*, 2015).

Overall, both additive and dominance components of genetic variance were significant for days to maturity, peduncle length, spikelets per spike, grains per spike, grain yield and harvest index in both generations which revealed important role of both additive and non-additive gene action in controlling these traits. However, prevalence of dominance type of gene action was noted for inheritance of various traits in F_1 and F_2 wheat half diallel populations. Broad-sense heritability values were greater than narrow sense which also specified preponderance of non-additive gene effects for inheritance of these traits. Selection for these traits in early segregating generation will might be not effective and delayed selection in later segregating generations is recommended for fruitful results (Afridi *et al.*, 2017a, b).

Conclusion

Additive and dominance components were found significant for all the traits which revealed the primary role of both additive and non-additive gene action in controlling days to maturity, peduncle length, spikelets per spike, grains per spike, grain yield and harvest index in F_1 and F_2 populations. However, components of genetic variance, Vr-Wr graphs and greater values of broad sense heritability revealed preponderance of over-dominance type of gene action which suggested that selection should be delayed to later segregating generations for improving yield associated traits.

Acknowledgements

This research was funded by the Higher Education Commission (HEC), Islamabad, Pakistan. We thank the University of Agriculture, Peshawar, Pakistan for administrative support, the Department of Plant Breeding and Genetics for various assistance throughout the project. The views and opinions expressed in this research manuscript are solely those of the authors and do not represent those of the University of Agriculture, Peshawar -Pakistan and the funding agency.

References

- Afridi, K., N.U. Khan, F. Mohammad, S.U. Khan, S.H. Shah and S.J.A. Shah, 2017a. Genetic expression of yellow rust resistance, yield and yield related traits in wheat using Griffing's combining ability analysis. *Pak. J. Bot.*, 49: 2005–2013
- Afridi, K., N.U. Khan, F. Mohammad, S.J.A. Shah, S. Gul, I.A. Khalil, M. Sajjad, S. Ali, I. Ali and S.M. Khan, 2017b. Inheritance pattern of earliness and yield traits in half diallel crosses of spring wheat. *Can. J. Plant Sci.*, 97: 865–880

- Ahmad, F., F. Mohammad, M. Bashir, S. Ullah and H. Khan, 2007. Inheritance of important traits in bread wheat over different planting dates using diallel analysis. *Sarhad J. Agric.*, 23: 955–963
- Ahmed, H.G.M., M.S. Saddam, A. Khan, A. Fatima, S. Saleem, M. Hassan, S. Zahid and M. Benish, 2015. Genetic mechanisms of yield related morphological markers response to increase grain yield in different environment of hexaploid wheat. J. Biodivers. Environ. Sci., 6: 158–164
- Ajmal, S., I. Khaliq and A.U. Rehman, 2011. Genetic analysis for yield and some yield traits in bread wheat (*T. aestivum* L.). J. Agric. Res., 49: 447–454
- Allah, S.U., A.S. Khan, A. Raza and S. Sadique, 2010. Gene action analysis of yield and yield related traits in spring wheat (*T. aestivum* L.). *Int. J. Agric. Biol.*, 12: 125–128
- Asadabadi, Y.Z., M. Khodarahmi, S.M. Nazeri, A. Mohamadi and S.A. Peyghambari, 2012. Genetic study of grain yield and its components in bread wheat using generation mean analysis under water stress condition. J. Plant Physiol. Breed., 2: 55–60
- Farooq, J., I. Khaliq, M. Akbar, I.V. Petrescu-Mag and M. Hussain, 2015. Genetic analysis of some grain yield and its attributes at high temperature stress in wheat (*T. aestivum* L.). *Roman. Soc. Cell Biol.*, 19: 71–81
- Farooq, J., I. Khaliq, M.A. Ali, M. Kashif, A.U. Rehman, M. Naveed, Q. Ali, W. Nazeer and A. Farooq, 2011. Inheritance pattern of yield attributes in spring wheat at grain filling stage under different temperature regimes. *Aust. J. Crop Sci.*, 5: 1745–1753
- Farshadfar, E., F. Rafiee and A. Yghotipoor, 2012. Comparison of the efficiency among half diallel methods in the genetic analysis of bread wheat (*T. aestivum* L.) under drought stress condition. *Ann. Biol. Res.*, 3: 1607–1622
- Grebennikova, I.G., A.F. Aleynikov and P.I. Stepochkin, 2011. Diallel analysis of the number of spikelets per spike in spring triticale. *Bulg. J. Agric. Sci.*, 17: 755–759
- Hayman, B.I., 1954. The theory and analysis of diallel crosses. *Genetics*, 39: 789–809
- Inamullah, F.U.K. and I.H. Khalil, 2011. Environmental effect on wheat phenology and yields. *Sarhad J. Agric.*, 27: 395–402
- Kaukab, S., S. Ijaz, I. Khaliq, K. Mahmood and U. Saleem, 2013. Genetic analysis for yield and some yield related traits in spring wheat (*T. aestivum* L). J. Agric. Res., 51: 221–230
- Kayan, N., İ. Kutlu, N.G. Ayter and M.S. Adak, 2017. Effects of different tillage systems and soil residual nitrogen on chickpea yield and yield components in rotation with wheat under dry farming areas. *Int. J. Agric. Biol.*, 19: 517–522
- Mather, K. and J.L. Jinks, 1982. *Biometrical Genetics*, 3rd edition, Chapman and Hall, London
- Mondal, S., R.P. Singh, J. Crossa, J. Huerta-Espino, I. Sharma, R. Chatrath, G.P. Singh, V.S. Sohu, G.S. Mavi, V.S.P. Sukaru, I.K. Kalappanvarg, V.K. Mishra, M. Hussain, N.R. Gautam, J. Uddin, N.C.D. Barma, A. Hakim and A.K. Joshi, 2013. Earliness in wheat: A key to adaptation under terminal and continual high temperature stress in South Asia. *Field Crops Res.*, 151: 19–26
- Nazir, A., I. Khaliq, J. Farooq, K. Mahmood, A. Mahmood, M. Hussain and M. Shahid, 2014. Pattern of inheritance in some yield related parameters in spring wheat (*T. aestivum L.*). *Amer. J. Biol. Life Sci.*, 2: 180–186
- Ojaghi, J. and E. Akhundova, 2010. Genetic analysis for yield and its components in doubled haploid wheat. Afr. J. Agric. Res., 5: 306–315
- PBS, 2016-2017. Year Book. Federal Bureau of Statistics (FBS), Ministry of Economic Affairs and Statistics, Govt. of Pakistan, Islamabad, Pakistan
- Pervez, M.W., I. Khaliq, S. Hussain, S. Ali, M. Rehman, K. Rehman, M.S. Khalid, G. Aisha and S. Hussain, 2014. Inheritance mechanism of some morphological characters in hexaploid wheat. *Sci. Agric.*, 7: 150–156
- Rabbani, G., A. Mahmood, G. Shabbir, K.N. Shah and N.U. Din, 2011. Gene action in some yield attributes of bread wheat under two water regimes. *Pak. J. Bot.*, 43: 1141–1156

- Saeed, M.S., M.A. Chowdhry and M. Ahsan, 2005. Genetic analysis for some metric traits in *aestivum* species. *Asian J. Plant Sci.*, 4: 413–416
- Singh, R.K. and B.D. Chaudhary, 1985. Biometrical Methods in Quantitative Genetic Analysis, pp: 39–78. Kalyani Publishers, New Delhi, Ludhiana, India
- Steel, R.G.D., J.H. Torrie and D.A. Dickey, 1997. Principles and Procedures of Statistics: A Biometrical Approach, 3rd edition. Mc Graw Hill Book Co., Inc., New York, USA
- Verhalen, L.M. and J.C. Murray, 1969. A diallel analysis of several fiber properties traits in upland cotton (*G. hirsutum* L.). Crop Sci., 9: 311–315
- Xiao, D., J. Cao, H. Bai, Y. Qi and Y. Shen, 2017. Assessing the impacts of climate variables and sowing date on spring wheat yield in the northern China. *Int. J. Agric. Biol.*, 19: 1551–1558
- Yao, J.B., H.X. Ma, L.J. Ren, P.P. Zhang, X.M. Yang, G.C. Yao, P. Zhang and M.P. Zhou, 2011. Genetic analysis of plant height and its components in diallel crosses of bread wheat (*T. aestivum* L.). Aust. J. Crop Sci., 5: 1408–1418
- Zare-Kohan, M. and B. Heidari, 2012. Estimation of genetic parameters for maturity and grain yield in diallel crosses of five wheat cultivars using two different models. J. Agric. Sci., 4: 74–85

(Received 20 March 2018; Accepted 31 July 2018)